
AI-RAN Platform and
Infrastructure Orchestrator
AI-RAN Alliance
WG2 AI-and-RAN

ai-ran.org

https://ai-ran.org/

2

Contributors (in alphabetical order, first name):
Emmanuel Marilly (Nokia)
Hyde Sugiyama (Red Hat)
Jun Song (Samsung)
Kuntal Chowdhury (Nvidia)
Martin Julien (Ericsson)
Michele Polese (Northeastern University)
Niloofar Mohamadi (zTouch Networks)
Shinta Sugimoto (SoftBank)
Shuvo Chowdhury (Nvidia)

Editor

Shinta Sugimoto (SoftBank)

3

Contents
1. Introduction ... 5

1.1. Background and context .. 5
2. Assumptions and Prerequisites ... 5

2.1. Alignment with the architecture .. 5
2.2. AI-and-RAN ... 5
2.3. RAN Workloads .. 8
2.4. AI Workloads ... 8
2.5. AI Accelerators .. 9

3. Related Work .. 9
3.1. ETSI MANO NFVO .. 9
3.2. O-RAN SMO ... 9
3.3. Kubernetes and Open Cluster Management .. 10
3.4. Nephio ... 10
3.5. ONAP ... 10

4. Problem Statements .. 11
5. Use Cases ... 11

5.1. Use Case 1: Intelligent and Constraint-Aware Workload Placement .. 11
5.2. Use Case 2: Dynamic Resource Allocation and Reconfiguration ... 11
5.3. Use Case 3: SLA-driven Resource Preemption and Prioritization ... 12
5.4. Use Case 4: External AI Workload Execution .. 12
5.5. Use Case 5: Predictive and Proactive Orchestration .. 12

6. Requirements .. 13
6.1. Functional requirements .. 13
6.2. Non-functional requirements .. 15

7. System Architecture ... 16
7.1. Network Overview .. 16
7.2. Functional Components ... 16
7.3. Orchestrator Processes .. 18

8. AI-RAN P&I Orchestrator Interfaces .. 20
8.1. North Bound Interface ... 20
8.2. East/West Bound Interface .. 20
8.3. South Bound Interface ... 20
8.4. Role Separation from Domain Specific Orchestrator ... 21

4

9. Further Study ... 22
10. Glossary of Terms ... 23
11. References .. 24
12. Document History .. 25

5

1. Introduction
1.1. Background and context
The evolution of AI technology has been remarkable, with generative AI-based applications and
services rapidly emerging. The development of AI, particularly large language models, requires
immense computational power, primarily on GPUs. The demand for computing resources
continues to grow for both AI training and inference.

Cloud computing significantly reduces CAPEX by enabling software to run on COTS hardware.
The transition from traditional network functions to virtualized network functions (VNFs) and
cloud-native network functions (CNFs) has been taking place globally. Radio Access Networks
(RANs) are no exception. The O-RAN ALLIANCE defines the architecture for next-generation
RAN under the assumption that many RAN components, such as CUs and DUs, are virtualized
or containerized. The adoption of virtualized and cloud-native network functions introduces a
key shift: compute resources are no longer dedicated solely to running RAN workloads.

RAN exhibits dynamic characteristics, as its usage depends on human activity. It operates at full
capacity during peak user activity and remains idle during off-peak hours. To maximize the
utilization of computing resources, accurate prediction of RAN compute requirements is highly
desirable.

2. Assumptions and Prerequisites
2.1. Alignment with the architecture
This document defines the AI-RAN Platform and Infrastructure (P&I) Orchestrator as outlined in
the AI-RAN architecture document [1]. The AI-RAN P&I Orchestrator defined in this document
also corresponds to the E2E Orchestrator at OL2 in the AI-and-RAN architecture document.
Note also that the AI-RAN P&I Orchestrator defined in this document primarily focuses on
orchestrating and managing resources at the container platform layer (i.e., Kubernetes). Future
iterations of this document will focus on infrastructure orchestration.

2.2. AI-and-RAN
The concept of “AI-and-RAN” means using a common IT infrastructure to accommodate both AI
and RAN workloads. Therefore, there is a fundamental requirement for the infrastructure to run
AI and RAN workloads concurrently. It is important to note that AI and RAN workloads may have
different SLAs. Concurrently, there are opportunities to reposition IT infrastructure as a revenue-
generating asset by executing AI workloads. The key to achieving the goal of “AI-and-RAN” is
to deploy and manage compute, networking, and storage resources so that both AI and RAN

6

workloads can meet their respective performance and resource requirements while running
simultaneously on the same infrastructure. The AI-RAN Platform and Infrastructure (P&I)
Orchestrator can dynamically configure the infrastructure as software, without hardware
updates, to change the type of workload supported by the infrastructure.

The platform and infrastructure resource management can be performed at varying levels of
granularity, resulting in different management scenarios:

• Scenario A – AI-RAN infrastructure servers can run both AI and RAN workloads
concurrently by sharing AI accelerators, CPUs, and other resources (e.g.,
RAM/networking).

• Scenario B (Per server) – In this scenario, the types of workloads to be run are isolated
per server. For example, suppose a cluster consists of 8 worker nodes (worker nodes 01,
02,…, 07). The AI-RAN P&I Orchestrator configures some of them (e.g., worker nodes 01,
02, and 03) for RAN, whereas the rest (worker nodes 04, 05, 06, and 07) are configured
for AI. The AI-RAN P&I Orchestrator can change this configuration over time.

• Scenario C (Per cluster) – In this scenario, the types of workloads to be run are isolated
per cluster. For example, suppose that a data center consists of multiple clusters (cluster
1, cluster 2, and cluster 3). The AI-RAN P&I Orchestrator configures cluster 1 and 2 to
run RAN workloads and cluster 3 to run AI workloads. The AI-RAN P&I Orchestrator can
change this configuration over time.

Figures 1 through 3 illustrate examples of resource management in their respective scenarios.

• Green-colored objects represent clusters or nodes configured for AI, as well as AI tasks,
while blue-colored objects represent clusters or nodes configured for RAN, as well as
RAN tasks.

• The arrow in Figure 1 indicates a CPU affinity setting, meaning that a given task is
assigned to a specific CPU core (i.e., CPU pinning).

• In Scenario A, partitioning of the CPU and AI accelerator is crucial. For CPUs, partitioning
can be achieved through techniques such as CPU isolation and CPU affinity configuration
(i.e., CPU pinning). An example of technology to partition GPU resources is NVIDIA’s
Multi-Instance GPU (MIG).

7

Figure 1: An example of Scenario A

Figure 2: An example of Scenario B

Figure 3: An example of Scenario C

8

None of the resource management scenarios is excluded from the scope of this document. Note
also that these management scenarios are not necessarily mutually exclusive; for example,
Scenario A, Scenario B, and Scenario C may be applied simultaneously within the same IT
infrastructure. Note also that the arrangement of these scenarios can be dynamically changed
without requiring any underlying hardware change.

2.3. RAN Workloads
The definition of “RAN workloads” in the context of AI-and-RAN is virtualized RAN (Radio
Access Networks) workloads. Virtualized RAN (vRAN) workloads are containerized and run as
CNF (Cloud-native Network Function). The vRAN may or may not be fully compliant with the O-
RAN standards.

2.4. AI Workloads
Table 1 defines the different types of AI workloads. It describes each workload type, including
whether it is subject to lifecycle management by the AI-RAN P&I Orchestrator. Lifecycle
management (LCM) of a workload refers to operations throughout its lifecycle, including creation
(onboarding), updating (e.g., applying configuration changes), scaling out, scaling in, scaling up,
scaling down, and deletion (decommissioning).

Table 1: Definition of different types of AI workloads

Type Description
Subject to LCM by the
AI-RAN P&I Orchestrator

AI-on-RAN
(Type A)

• AI workload developed by a third-party,
unrelated to RAN

• Tightly integrated with AI Orchestrator
• Lifecycle managed by AI Orchestrator

No

AI-on-RAN
(Type B)

• AI workload developed by a third-party,
unrelated to RAN

• Independent from any AI Orchestrator
• Lifecycle not managed by AI Orchestrator

Yes

AI-for-RAN
(Type A)

• Workload that leverages AI to enhance
RAN performance

• Tightly integrated with RAN management
and orchestration functions

• Lifecycle managed by RAN orchestrator

No

AI-for-RAN
(Type-B)

• Workload that leverages AI to enhance
RAN performance

• Loosely coupled with the RAN
management and orchestration function

• Lifecycle not managed by RAN
orchestrator

Yes, if the onboarding
request of the workload is
directed to the AI-RAN
P&I Orchestrator

9

2.5. AI Accelerators
In the edge data centers, specialized hardware known as “AI Accelerators” is increasingly
employed to enhance the performance of machine learning (training) and inference tasks. These
accelerators include various processing units, such as GPUs (Graphics Processing Units), TPUs
(Tensor Processing Units), and NPUs (Neural Processing Units). Each component is optimized to
efficiently handle the computational demands of AI workloads, particularly the large-scale
matrix operations and parallel processing typical of deep learning models. In this document, the
term AI Accelerator does not exclusively refer to GPUs, but also encompasses TPUs, NPUs, and
other processing units that may be developed and become available in the future.

3. Related Work
This section outlines state-of-the-art orchestration technologies from standardization bodies as
well as open-source communities, highlighting their capabilities from two perspectives: (a)
resource management and (b) lifecycle management of application workloads. This section also
outlines prior work related to orchestration, particularly at the container platform (Kubernetes)
layer.

3.1. ETSI MANO NFVO
The NFV Orchestrator (NFVO) in ETSI MANO [2] is responsible for orchestration from two main
perspectives: (a) resource management, where it coordinates with VIMs to allocate and optimize
compute, storage and network resources across infrastructures; and (b) oversees the
deployment, scaling, updating, migration, and termination of VNFs and network services by
coordinating with VNF Managers, ensuring that multiple VNFs operate together as intended
within service policies.

3.2. O-RAN SMO
The Service Management and Orchestration (SMO) framework, as defined in the O-RAN
architecture, is designed to orchestrate RAN workloads, including RT/Non-RT RIC, CU, DUs, and
RUs. From a resource management perspective, the SMO, in coordination with the O-Cloud and
the Infrastructure Management System (IMS), allocates and optimizes the compute, storage, and
networking resources required for RAN workloads. From the perspective of lifecycle
management for application workloads, the SMO provides a framework in which dedicated
services handle onboarding, deployment, configuration, scaling, updating, and termination of
RAN functions, while supporting policy-based automation and closed-loop control in
collaboration with rApps and xApps.

10

3.3. Kubernetes and Open Cluster Management
Kubernetes is a container platform that groups multiple servers into a logical unit called a cluster.
It enables efficient utilization of computing resources within the cluster and ensures the stable
operation of containerized applications. In Kubernetes, the scheduler plays a central role by
determining the placement of container applications based on the status and availability of
computing resources across the cluster.

Open Cluster Management (OCM), on the other hand, is a platform designed to manage multiple
Kubernetes clusters in a unified manner. With OCM, administrators can apply and enforce
policies consistently across managed clusters. In addition, OCM provides foundational
capabilities—such as observability, policy management, and cluster governance—that support
the realization of FCAPS (Fault, Configuration, Accounting, Performance, and Security)
functionalities in multi-cluster environments.

3.4. Nephio
Nephio is an open-source initiative under the Linux Foundation’s LF Networking program,
originally initiated by Google Cloud and supported by major telecom operators and vendors. Its
community focuses on enabling intent-driven, cloud-native automation for telecom networks.
Nephio excels in treating multiple Kubernetes clusters as managed entities and orchestrating
them declaratively through a GitOps-based model.

3.5. ONAP
ONAP, an open-source project of the Linux Foundation’s LF Networking program, aims to deliver
comprehensive network and service orchestration by automating the lifecycle of physical, virtual,
and containerized network functions across distributed cloud environments.

11

4. Problem Statements
The AI-RAN IT Infrastructure, by definition, is a collection of computing resources designed to
host RAN systems alongside AI workloads. In practice, this means that the AI-RAN data centers
are deployed across geographically distributed locations, resulting in an infrastructure composed
of multiple clusters.

Kubernetes is the de facto standard container platform and serves as the foundation for
container-based cloud computing environments. It enables orchestration within a cluster,
optimizing computing resource utilization. However, each Kubernetes cluster operates
independently and lacks native mechanisms for coordinating across multiple clusters.

SMO in the O-RAN standard primarily focuses on RAN workload management. In AI-RAN, it is
essential to manage not only RAN workloads but also AI workloads, which may have different
requirements from those of RAN workloads.

Given these factors, there is a need for an entity that provides a holistic view of the entire AI-
RAN IT Infrastructure, which consists of multiple Kubernetes clusters, and coordinates the
efficient utilization of computing resources such as CPUs and AI accelerators across the entire
system.

5. Use Cases
5.1. Use Case 1: Intelligent and Constraint-Aware Workload Placement
The orchestrator determines the target cluster and, optionally, the target node(s) for deploying
a given workload, taking various constraints into account. The most basic constraint is the
availability of computing resources. That is, the orchestrator shall find a destination cluster/node
where required computing resources (CPU, AI accelerator, memory, storage, etc.) are available.
Besides, there are other factors that may affect orchestration, such as type, priority, and locality
of the workload.

5.2. Use Case 2: Dynamic Resource Allocation and Reconfiguration
The orchestrator dynamically adapts the configuration to the available computing resources
based on the orchestration outcome to maximize resource utilization. To be more specific,
resource utilization in this context means the use of computing resources such as CPU, AI
accelerators, memory, and storage. The higher the resource utilization, the higher the ROI.
Achieving high resource utilization requires fine-grained resource management along with
dynamic allocation and control mechanisms.

12

5.3. Use Case 3: SLA-driven Resource Preemption and Prioritization
In shared compute environments, critical workloads such as RAN functions must be prioritized
over lower-priority tasks. If a high-priority RAN service request arrives during an ongoing AI job
(e.g., model training), the orchestrator pauses or preempts the AI workload and reallocates the
resources without violating service-level agreements.

5.4. Use Case 4: External AI Workload Execution
The orchestrator facilitates the exposure of specific parts of the AI-RAN infrastructure to external
entities, enabling the execution of AI workloads from third parties. Such capability helps achieve
higher resource utilization when the demand for running workloads is limited. The computational
demands of RAN workloads are relatively static, whereas those of AI workloads can vary
dynamically.

5.5. Use Case 5: Predictive and Proactive Orchestration
Leveraging historical trends and real-time telemetry, the orchestrator employs AI-driven
predictive analytics to anticipate workload surges – such as elevated RAN traffic during peak
periods or spikes in AI accelerator demand for batch AI inference. This foresight enables
proactive resource allocation and dynamic workload shifting, minimizing contention and
enhancing system responsiveness and efficiency. RAN traffic patterns are closely correlated with
human activity and exhibit well-known 24/7 trends. Based on these patterns, it is possible to
predict RAN traffic fluctuations with reasonable accuracy. The AI-RAN P&I Orchestrator may
actively leverage this predictive information to orchestrate the AI-RAN IT infrastructure,
maximizing the utilization of available computing resources.

13

6. Requirements
To support intelligent and SLA-compliant orchestration across distributed AI-RAN clusters, the
orchestrator shall possess the following key capabilities.

6.1. Functional requirements

6.1.1. Discovering clusters and maintaining an inventory

The Orchestrator shall be able to discover any workload cluster that newly joins the AI-RAN IT
Infrastructure. It shall also maintain an up-to-date inventory of all workload clusters that make
up the AI-RAN IT Infrastructure.

6.1.2. Monitoring computing resources of the AI-RAN Cloud Infrastructure

The Orchestrator shall be able to collect metrics from each compute node in each workload
cluster. The metrics collected are stored in a persistent storage (Database).

6.1.3. Handling requests from external entities to deploy workloads on the AI-RAN
Cloud Infrastructure

The Orchestrator shall be able to handle requests from external entities, specifically Consumers
(Requesters) and Prediction through the North-Bound Interface.

6.1.4. Identifying candidate compute (e.g., Kubernetes worker nodes) that have
sufficient computing resources requested

The Orchestrator shall be capable of identifying candidate compute infrastructure (e.g.,
Kubernetes worker nodes) that have sufficient computing resources to meet the workload's
requirements to be onboarded. The requested resources can be found in the workload manifest.

6.1.5. Dispatching workloads to the destination cluster/node

The Orchestrator shall be capable of dispatching a workload to the target cluster or node. The
Orchestrator may take either a declarative approach or an imperative approach to apply the
corresponding change to the target cluster.

6.1.6. Conducting priority-aware scheduling of workloads

The Orchestrator shall be capable of taking priority into account in its scheduling. Priority is a
type of workload attribute that indicates the relative importance of a workload. For example,
RAN workloads (such as vCU and vDU) can be assigned a higher priority than AI-on-RAN
workloads.

14

6.1.7. Conducting data-aware scheduling for AI workloads

Some types of AI workloads require a large amount of training data. For example, an AI-for-RAN
workload designed to improve RAN performance requires logs and metrics generated by DUs,
resulting in a large data volume. The Orchestrator shall be capable of accounting for data
proximity for a given workload in its workload scheduling.

6.1.8. Changing the configuration of the compute (e.g., Kubernetes worker node)
according to the demand for running AI or RAN workloads

The Orchestrator shall be capable of dynamically changing the configuration of compute
resources (i.e., Kubernetes worker nodes). Certain types of RAN workloads, especially vDU, may
impose specific requirements that necessitate OS-level configuration changes (e.g., kernel
parameter tuning).

6.1.9. Conducting tenant-aware resource management and orchestration

The Orchestrator shall be capable of managing resources with multi-tenancy awareness. The
AI-RAN IT Infrastructure may host workloads from multiple tenants. For example, the
Orchestrator shall be capable of enforcing resource quotas per tenant across workload clusters.

6.1.10. Sharing the availability of computing resources with a trusted party

The Orchestrator shall be capable of sharing the availability of computing resources with a
trusted party, such as a Domain Specific Orchestrator acting as a broker. This enables the AI-
RAN IT Infrastructure to capture and serve external demands for executing AI workloads.

6.1.11. Receiving requests for onboarding AI workloads from external entities through
the trusted party

The Orchestrator shall be capable of handling onboarding AI workloads from external entities
via a trusted party. The Orchestrator may be involved in request handling either directly or
indirectly. In the latter case, an onboarding request for an AI workload may be routed directly to
the target cluster shared with the trusted party.

6.1.12. Handling the prediction of computing resource demand from the perspective of
RAN and AI, respectively

The Orchestrator shall be capable of interacting with a Prediction function through an
East/Westbound Interface. For example, a Prediction function for the RAN domain may provide
forecasts of RAN network usage. Such prediction information is valuable and essential for the
Orchestrator to efficiently manage resources.

15

6.1.13. Authenticating and authorizing clients who send requests through a
Northbound Interface or any other external entities through the exposed API

The Orchestrator shall be capable of authenticating a client that submits a request through a
Northbound Interface. The Orchestrator shall further authorize the request based on the Role-
Based Access Control (RBAC) information stored in the persistent data store.

6.1.14. Securing data integrity, data confidentiality, replay protection

The Orchestrator shall apply appropriate security measures, namely SSL/TLS, to secure data
exchanged with external systems and to ensure data integrity, confidentiality, and replay
protection. The Orchestrator exchanges information with external components through its
interfaces. Its internal functional components also exchange information among themselves. The
same security principle shall apply to all such data exchanges.

6.1.15. Preempting an on-going job (e.g., an AI training job) and triggering checkpoints
for the respective workloads, if supported

The Orchestrator shall be capable of preempting an on-going job (e.g., an AI training job). If the
workload supports checkpointing, the Orchestrator shall trigger a checkpoint for the workload
subject to preemption before termination.

6.1.16. Handling energy-related metrics (e.g., energy consumption) and taking them
into account for scheduling workloads

The Orchestrator shall be capable of handling energy-related metrics. Such metrics include
energy consumption per cluster or node, time-series data on energy consumption, energy
availability per data center, and information on energy supply and its sources, including whether
the energy is renewable.

6.1.17. Exchanging policy information with Domain Specific Orchestrator

The Orchestrator shall be capable of exchanging policy information with a Domain Specific
Orchestrator (DSO) to coordinate resource management between the two orchestrators. For
example, resource migration may occur from the AI-RAN P&I Orchestrator to the DSO, or vice
versa.

6.2. Non-functional requirements
For future study

16

7. System Architecture
This section provides an overview of the network architecture and the functional components
that comprise the AI-RAN P&I Orchestrator. These components are designed based on the
requirements outlined in the previous section. In other words, the functional components are
structured to satisfy those requirements.

7.1. Network Overview
Figure 5 illustrates an overview of the AI-RAN network. There are two types of clusters:
management clusters and workload clusters. The management clusters are primarily designed
to host management functions, such as the AI-RAN P&I Orchestrator, git servers, and image
registries. The workload clusters, on the other hand, are primarily designed to accommodate
workloads—including both AI and RAN workloads. From the perspective of computing resources,
all worker nodes across all workload clusters collectively represent the compute resource assets
of the AI-RAN IT Infrastructure. In contrast, management clusters contribute mainly through
orchestration and auxiliary services.

Figure 5: AI-RAN Network Overview from Container Platform perspective

7.2. Functional Components
This section focuses on the AI-RAN P&I Orchestrator itself. Figure 6 illustrates its system
architecture. The orchestrator is composed of five functional components:

1. Multi-Cluster Management Function
2. Metrics Collection Function
3. Multi-Cluster Scheduling Function
4. Dynamic Scoring Function
5. Resource Arrangement Function

17

Figure 6: System architecture of AI-RAN P&I Orchestrator

The Multi-Cluster Management Function is responsible for managing multiple clusters—
particularly the workload clusters—in an integrated manner. Specifically, it establishes
associations between the management cluster and each workload cluster and creates and
maintains an inventory of the workload clusters. When a new workload cluster joins the AI-RAN
IT Infrastructure, the function detects the cluster and updates the inventory accordingly. The
inventory file is stored in persistent storage (Database).

The Metrics Collection Function collects metrics from all clusters listed in the workload cluster
inventory. Specifically, it retrieves metrics by accessing each node's metrics endpoints within the
workload clusters. The implementation details of the metrics collection process may vary; for
example, the function may gather metrics by accessing endpoints exposed by each worker node
in every workload cluster. The collected metrics are stored in persistent storage (Database).

The Multi-Cluster Scheduling Function schedules workloads across a multi-cluster
environment. This function takes the following inputs:

• A workload manifest submitted through the NBI
• Dynamic scoring results retrieved from the Database

Using this information, the function schedules workloads across multiple clusters. Based on the
dynamic scoring results, it determines the desired state of resources within the AI-RAN IT
Infrastructure. A simple example of a desired state is deploying a given workload to a specific
cluster. A more complex example involves deploying a workload (e.g., AI-on-RAN workload) to

18

a cluster where a worker node must be reconfigured—e.g., switching its role from RAN to AI—
to accommodate the new workload.

The Dynamic Scoring Function evaluates and scores multiple potential execution targets for a
given workload with specific attributes, based on corresponding evaluation criteria, to assess the
expected outcome when the workload is executed on each target. The function takes the
following inputs:

• evaluation criteria,
• metrics collected from workload clusters
• information on workload clusters

The output is the evaluation result (score) of each resource arrangement.

The Resource Arrangement Function applies intended resource changes to target cluster(s) or
node(s) via the Southbound Interface (SBI). Specifically, it receives input from the Multi-Cluster
Scheduling Function as an array of operations that describe the desired resource changes. These
operations may include:

• deploying workloads (e.g., Kubernetes Deployments), and
• modifying node configurations.

The exact method for applying resource changes is implementation-specific. For example, one
may adopt a declarative approach with GitOps or an imperative approach via the Kubernetes API.
In the declarative case, the Resource Arrangement Function generates manifest files for the
resources to be modified and pushes them to a Git repository.

7.3. Orchestrator Processes
In this section, concrete procedural steps are presented so that readers can gain a clearer
understanding of the roles of each functional component within the AI-RAN P&I Orchestrator. A
typical use case, the processing of an application onboarding request, is used as an example.

Assumptions:

• The Application to be onboarded is an AI workload, specifically an AI-on-RAN type B
application.

• The AI workload has no locality requirement; in other words, the Consumer does not care
which workload cluster executes the workload.

• The AI-RAN administrator aims to minimize the overall energy consumption of the AI-
RAN IT Infrastructure.

19

• The workload clusters are geographically distributed, and the energy supply conditions
differ across data centers. More specifically, renewable energy availability varies across
data centers.

Here are the procedural steps taken in this scenario:

1. A Consumer submits an onboarding request for an AI workload. The request is expected
to include the following information: the workload manifest (e.g., Kubernetes
Deployment manifests) and workload attributes.

2. The NBI authenticates the Consumer and authorizes the request.
3. The NBI enqueues the request to the Job Request Queue (JRQ), which is stored in a

persistent data store (Database). The JRQ is continuously monitored by the Multi-Cluster
Scheduling Function (MCSF) and the Dynamic Scoring Function (DSF).T

4. The Dynamic Scoring Function (DSF) is triggered to perform scoring for each workload
cluster, considering factors such as real-time resource availability (CPU, memory, and AI
Accelerators) and renewable energy availability. The DSF stores the resulting scores in
the Database.

5. Once the dynamic scoring results become available, the Multi-Cluster Scheduling
Function (MCSF) is triggered. The MCSF determines the desired state of the AI-RAN IT
Infrastructure – in this case, the optimal cluster and node to execute the requested
workload – by selecting a cluster that provides sufficient computing resources and an
economical energy supply.

6. The Resource Arrangement Function (RAF) derives the detailed configuration required to
transform the AI-RAN IT Infrastructure in into the desired state. In this case, the
necessary changes involve deploying the AI workload on the selected cluster/node.
Specifically, the RAF adjusts the deployment manifest by specifying the designated node
using appropriate node affinity settings (such as nodeSelector or nodeAffinity). The RAF
not only prepares the required manifest but also orchestrates the processing order as
needed.

20

8. AI-RAN P&I Orchestrator Interfaces
The AI-RAN P&I Orchestrator interacts with various external components through dedicated
APIs. As illustrated in Figure 6, it exposes three types of interfaces:

• North Bound Interface (NBI)
• East/West Bound Interface (E/W-BI)
• South Bound Interface (SBI)

8.1. North Bound Interface
The Northbound Interface (NBI) enables the orchestrator to receive requests from Consumers
(also referred to as Requesters). A typical Consumer is an entity that intends to deploy and run
AI-on-RAN workloads within the AI-RAN IT Infrastructure. Consumers may submit workload-
onboarding requests that include a workload manifest. These requests can optionally include
annotated metadata, referred to as Workload Attributes. It is assumed that the NBI inherently
provides authentication and authorization capabilities for API requests.

8.2. East/West Bound Interface
The East/Westbound Interface (E/W-BI) enables the orchestrator to communicate with Domain-
Specific Orchestrators (DSOs). A Domain-Specific Orchestrator refers to an orchestration
function tailored to a particular domain, such as RAN or AI/ML. For example, in an O-RAN-
compliant RAN system, the SMO (Service Management and Orchestration) can be considered a
DSO for the RAN domain.

Another type of entity that may interact with the E/W-BI is a Prediction component. This entity
performs forecasting of future events or conditions within a specific domain. For example, a RAN
Prediction function forecasts radio access network (RAN) usage patterns. Since RAN usage is
closely correlated with human activity, it often exhibits well-known daily trends over a 24/7 cycle.
Another example is an energy-related Prediction function, which may provide short-term
forecasts of renewable energy availability in specific regions.

8.3. South Bound Interface
The Southbound Interface (SBI) enables the orchestrator to communicate with workload clusters
across multiple functional aspects.

• First, the Multi-Cluster Management Function establishes associations with workload
clusters. This function and its agents—deployed within each workload cluster—
communicate bidirectionally via the SBI.

• Second, the Metrics Collection Function retrieves metrics from each cluster through the
SBI.

21

• Third, the Resource Arrangement Function applies desired resource changes to the target
cluster(s) or node(s) via the same interface.

8.4. Role Separation from Domain Specific Orchestrator
Table 2 defines the respective roles of the AI-RAN P&I Orchestrator and the Domain-Specific
Orchestrator to clarify the separation of responsibilities between them. Resource management
includes monitoring the utilization of computing resources through metrics collection, and
arranging resources for specific computational purposes (e.g., reconfiguring nodes from AI to
RAN, or vice versa).

Table 2: Roles of AI-RAN P&I Orchestrator and Domain Specific Orchestrator

AI-RAN P&I Orchestrator
Domain Specific Orchestrator
(DSO)

Resource Management • Has visibility of the entire
AI-RAN IT Infra

• Has precedence in
changing the domain
boundaries

• Has visibility of all the
resources under the control of
the DSO

Lifecycle Management • Manages the lifecycle of
workloads whose LCM
request is directed to the
AI-RAN P&I Orchestrator

• Destination clusters and
nodes could be the ones
that are not bound to any
DSO

• Manages the lifecycle of the
domain-specific workloads

• Destination clusters and
nodes are the ones under the
DSO’s control

22

9. Further Study
The following items are for further study.

• Orchestration of hardware, network, and storage: So far, the focus has been on
orchestrating computing resources such as CPUs, memory, and AI accelerators.
Considering the broader role of the AI-RAN P&I Orchestrator, its scope should be
extended to include the orchestration of hardware, network, and storage resources.

• Clarify the meaning and role of the “default” domain: Further clarification is needed
regarding the meaning, role, and intended use of the “default” domain within the AI-RAN
IT Infrastructure. In addition, the scope of the functions that the AI-RAN P&I Orchestrator
can perform within this domain should be clearly defined.

• Interaction between the AI-RAN P&I Orchestrator and the RAN Orchestrator: Further
study is needed on how the AI-RAN P&I Orchestrator should interact with the RAN
Orchestrator (e.g., the O-RAN SMO). This includes identifying the information that must
be exchanged and detailing the negotiation process between the two orchestrators.

• Non-functional orchestrator requirements: Additional requirements may be defined in
future versions of this document.

23

10. Glossary of Terms
• AI-RAN P&I Orchestrator
• AI-RAN IT Infrastructure
• Lifecycle Management (LCM)
• Management Cluster
• Workload Cluster
• Domain Specific Orchestrator (DSO)
• Workload Attributes
• Virtualized Infrastructure Manager (VIM)
• Return on Investment (ROI)

24

11. References
[1] AI-RAN Alliance, "AI-RAN Architecture Overview and Component Definitions”, Version 1.2,

February 2026
[2] ETSI GS NFV-006 “NFV Release 4; Management and Orchestration; Architectural Framework

Specification, V4.5.1, 2024-05,
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/006/04.05.01_60/gs_nfv006v040501p.pdf

https://www.etsi.org/deliver/etsi_gs/NFV/001_099/006/04.05.01_60/gs_nfv006v040501p.pdf
Susanna Quilter
Sticky Note
Marked set by Susanna Quilter

 25

12. Document History
Version Edited by Comments Date Updated

0.1 Shinta Sugimoto
(SoftBank Corp.)

Table of contents 2025/04/23

0.2 Shinta Sugimoto
(SoftBank Corp.)

Filled in texts for the following sections:
1. Introduction
2. Assumptions and Prerequisites
4. Problem Statements
5. Use cases

2025/05/10

0.3 Shinta Sugimoto
(SoftBank Corp.)

Reflected comments provided for rev0.2:
Section 2.3 RAN Workloads
Section 2.5 AI Accelerators
Section 5 Use Cases
Section 6 Requirements

2025/07/03

0.4 Shinta Sugimoto
(SoftBank Corp.)

Reflected comments provided for rev0.3
Section 2.4
Section 6.1.17
Section 7 (System Architecture)
Section 8 (Interfacing with External Systems)
Section 9 (Glossary of Terms)

2025/08/13

0.5 Shinta Sugimoto
(SoftBank Corp.)

Reflected the outcome of the discussion in the WG
meeting

2025/09/08

06 Shinta Sugimoto
(SoftBank Corp.)

Reflected the comments and feedback from WG2
members and the results of WG meeting
discussions

2025/09/22

07 Shinta Sugimoto
(SoftBank Corp.)

Reflected comments and feedback from WG2
members and the results of WG meeting
discussions

2025/10/07

08 Shinta Sugimoto
(SoftBank Corp.)

Added detailed descriptions of individual
requirements in Section 6 (Requirements)
Newly introduced Section 7.3 (Processes of
Orchestrator)

2025/10/21

09 Shinta Sugimoto
(SoftBank Corp.)

Responded to the comments given to versions 06
and 07
Responded to the feedback provided in the WG2
meeting (10/10)
Responded to the comments given to version 08

2025/10/29

10-rc1 Shinta Sugimoto
(SoftBank Corp.)

Cleaned up the documents (fixed editorial errors)
Reflected the texts suggested for Section 2.2
Added section 9 (Further Study)

